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I. INTRODUCTION

The performance of an LMS (least mean square) adaptive array [11
can be influenced by the modulation on an interference signal. For
example, pulsed interference can make the weights in the array alternate
back and forth between two sets of values, one when the interference is
on and the other when it is off [2]. Interference modulation has two

deleterious effects on the array. First, it can make the array modulate

the desired signal. Second, it can cause the array output SINR (signal-

to-interference-plus-noise ratio) to vary with time. In a digital
communications system, such SINR variation usually results in an
increased bit error probability. For these effects to occur, the
modulation parameters must be properly chosen. For example, the
modulation rate must be commensurate with the array speed of response.

In previous studies, the authors have examined the effects on an
adaptive array of interference with pulsed modulation [27, with
sinusoidal, suppressed carrier envelope modulation [3] and with
arbitrary periodic envelope modulation [4]. Each of these studies
involved interference with envelope modulation but not phase
modulation.

The purpose of the present report is to extend the earlier work to
handle interference with phase modulation., We assume an adaptive array
receives an interference signal with a periodic but otherwise arbitrary
phase modulation. We present a method of solving for the resulting

time-varying array weights. Using this method, we then study as an




example the behavior of a 2-element array that receives an interference
signal with sinusoidal phase modulation. We show how each interference
signal parameter affects the desired signal modulation, the SINR
variation and the bit error probability.

In Section II, we formulate the problem and present the
mathematical technique for solving for the array weights. In Section
ITT, we describe the 2-element array and the phase modulated
interference signal and present our numerical results. Section IV

contains the conclusions.

IT. FORMULATION OF THE PROBLEM

Assume an adaptive array consists of J isotropic elements with half
wavelength spacing, as shown in Figure 1. Let ;5(t) be the analytic
signal received on element j. ;S(t) is multiplied by a complex weight
wj and then summed to produce the array output ;(t). The array weights
are controlled by LMS (least mean square) feedback loops [1], which
obtain each weight wj by integrating the product of ;s(t) with the error
signal Z(t). The error signal is the difference between the reference
signal :(t) and the array output ;(t). The array weights satisfy the

differential equation

dW 4+ koW = kS , (1)
dt

where W = [wy, wo, ..., wy]T is the weight vector, t is time, 4 is the

the covariance matrix,




s = E(XXT) > (2)
S is the reference correlation vector,
s = E[x*r(t)] , (3)

and k is the LMS loop gain. In these equations, X is the signal vector,

K= [0, %), v g (4)

T denotes transpose, * complex conjugate and E(+) expectation.
We assume that a desired signal and an interference signal are
incident on the array and that thermal noise is present in each element

signal. The signal vector then contains three terms,

X = Xd + Xi + Xn R (5)

where X4, Xj, and X, are the desired, interference and noise vectors,
respectively.

Let the desired signal be a CW (single frequency) signal incident
from angle 64 relative to broadside. (6 is defined in Figure 1.) The
desired signal vector is then
ej(wot+¢d)u

X, =A

d d d s (6)

where A4 is the amplitude, w, is the carrier frequency, ¥4 is the
carrier phase angle, and U4 is a vector containing the interelement

phase shifts,




Figure 1, The LMS Adaptive Array.
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Uy = 1, s seey @ ] , (7

T sin ©

-
(=%
1]

d ’ (8)
and where, to simply notation, we let
K=J-1 . (9)

We assume ¢4 is a random variable uniformly distributed on (0,2x).
Next, assume an angle modulated interference signal arrives from

angle 8;. The interference signal vector is

_ j(“’ot + ‘Pi)
Xj = Aje Upley (10)

with
/ eri(t) \
ej[Yi(t'Ti)‘¢1]
j -2T;)-2
U (t) - eJ[Yi(t i)-244) ’ an

eJ'[\w (t-KT{)-Ké4] /

5




where vj(t) is the angle modulation as received on element 1, Aj is the

interference amplitude and ¥; is the carrier phase angle. Tj and ¢; are

the interelement time delay and carrier phase shift,

T. =T _sin 6, ’ (12)
LI i
and
o; = w Ty = 7sinb, | (13)

We assume y; is a random variable, uniformly distributed on (0,2r7) and
statistically independent of yq.

Finally, we assume each element signal contains a zero-mean,
independent Gaussian thermal voltage ;s(t) of power o2, The noise

vector is
~ ~ ~ T
Xn = [nl(t)’ nz(t)’ voey nJ(t)] R (14)

where

~

el (In (8)) = 0P8y 4 1e g, k<d (15)

~

with ij the Kronecker delta. The nj(t) are assumed statistically

independent of both ¥q and ¥i.

Under these assumptions, the covariance matrix in (2) is the sum of

a desired, an interference and a noise term,

b= g + b5 + By, (16)




The desired signal term is

ey Ty L a20* T
by = E(XX') = AU,

The interference term is

1

erv®eTya2
°1'E(Xixi)’Ai

where

qu(t) = Yi (t‘qTi) - Y'i (t“pTi)

LJDx01(t)-4;] IDxok (t)-Ke41]

ej[XIO(t)+¢i]

ej[xKo(t)+K°i] eJ[XKI(t)+(K'1)¢1]

(17)

ei[xlx(t)-(K-1)¢1]

(18)

(19)

and where p and q are integers between 0 and K. The noise term is

¥y = o2l

with 1 the identity matrix.

(20)




To compute the reference correlation vector S in (3), we must
specify the reference signal :(t). In practical applications, the
reference signal is derived from the array output [5,6,71. To make the
array perform properly, it must be a signal correlated with the desired
signal and uncorrelated with the interference. Here we assume the
reference signal to be a replica of the desired signal,

f(6) = A o0t (21)

where A. is its amplitude. Equation (3) then yields

*
S=A_A, U (22)

When (16) and (22) are substituted into (1), we find that the
weights satisfy a system of differential equations with constants on the
right but with time-varying coefficients (due to ¢;). In the rest of
this section, we develop a method for solving this system of equations.

To solve (1), we do several things. First, we write the

interference covariance matrix in a more compact form. We define J

vectors,
Vo= (1,0,0..00" |
v =0, e 0, L 0,00 .
v, = (0, 0, )]




e

and .

T

-JKéi
e ) . (23)

VK = (0, 0, 0 ... 0,
Note that these J vectors form an orthonormal set,

V.V, =8 0<j,k <K . (24)

T.,*
gk gk

By using these vectors, ¢; in (18) may be written

K K
o, =A2 1 1 eiXpqlt) y* T (25)
1 T p=0 =0 P q
so (1) becomes
2 T 2 § ixpg(t) v* T 2 *
dw J - L ]
R*"[Ad”d Uy + AZ p§0q=0e"pq Vo Vg + oTTIW = kA AU
(26)
Next, we normalize (26). Dividing by k o2 gives
T et T A o
dW(t') + [o.+ £, JXpq v v Iw(t') = or U
(27)
where
= MU 28
o, = T+, U, U, , (28)




~

_AqT X Famnnd .
&g = ;?_.- input signal-to-noise ratio (SNR) per element,
Y4
Ei = _%_ = input interference-to-noise ratio (INR) per element,
(o}
and where
t' = ko?t = normalized time . (29)

Also, we note that the constant 5[ on the right will just appear as a
g

scale factor in the solution for W(t'). It has no effect on the array

output SINR to be discussed below. Hence we arbitrarily set 51 =1 to

a
eliminate it. Equation (27) is then
L ) e /5
dw(t') + o, + ¢, JXpq VoV W) = v, - (30)
o % p=0 q=0 € p q] (£ ta Y

Next, in order to be able to solve (30), we make the important

(t) is periodic. If
th)

(
vi{t) is periodic, the functions e q are also periodic.

assumption that the angle modu]at1on Yj
Therefore we may expand each of them in a Fourier series. In order to
simplify notation later, we shall also include the constant & in this

expansion. Thus, we write

£ e = L fepge ™ R (31)

10




Xpg(t')
q and o' is the

J
where fgpq is the 2th Fourier coefficient of £ e
m

normalized fundamental frequency of v;(t'), i.e.,

. , 32
“m T wm/koz (32)

where wy is the fundamental frequency of vj(t). We note for later use
that if p=q, then qu(t') = 0, so the series in (31) contains only a

zero frequency term, i.e.,
fopp = % %0 - (33)
Also, it is easily shown that

*
£ = f , (34)
Lqp -2pq

and

)
= ~joum Ty . (35)
fo(p+1)(q+1) = Fapq ©
In addition to assuming vj(t) periodic, we shall also assume that
the bandwidth of the interference is finite, i.e., we assume that only a
finite number of terms are nonzero in (31). Suppose the coefficients in
(3') are zero for |2| > L, where L is some integer.

Then

Ixpg(t") L jnw't’
ge T = 1 fgpqe M . (36)
pe-L

11




Since (30) is a linear differential equation with periodic
coefficients, the solution for W(t') will be a periodic function of time
after any initial transients have died out [81. 1In this paper, we shall
not attempt to solve for initial transients, but shall consider only the
periodic steady-state solution. Once any initial transients are over,

W(t') can be written as a Fourier series,

. ot

o jnw t

W(t'y = 5 Chpen m (37)
where C, is a vector Fourier coefficient. Substituting this series into

(30) and enforcing the resulting equation for each frequency component

separately gives

L X

K

i ! S‘ * T = f—‘ * -0 =)
(Pp+jnu 1)C + QE_L A qZOfﬂqup vq Cros™ "EqV48 00 <n<w,
(38)

Equation (38) is an infinite system of vector equations, one for each n.
To solve for the C,, we first assume that there is some integer N such
that the Fourier coefficients C, are negligible for |n| > N. In other
words, we assume W(t') can be adequately approximated by a finite sum
N R Vo
jnw t
W(t') = J Che M . (39)
Such an approximation is reasonable because the feedback loops

controlling the array weights in W(t') are lowpass filter loops that

cannot respond above a certain speed.

12




b <=t

If we set Cp=0 for |n| > N, then (38) yields a finite system of
equations for the remaining C,. Each vecton C, has J scalar components,
so the result is a system of (2N+1)J linear equations in the unknown
scalar components. One could solve for W(t') by solving this system of
equations numerically.

However, rather than work with (38) directly, we shall instead
transform variables first. We do this because the resulting equations
have a more systematic form. Specifically, we shall express each C, in
terms of its components along the vectors Vi in (23). (Since each Cj,
has J components, the J orthonormal vectors Vg can serve as basis
vectors.) We write

K

) o, (40)

Cn = k=0 cl'n,k Vk

where the on y are scalar coefficients. ap g is the component of Cp

along the unit vector V:. Substituting (40) into (38), muitiplying

the result on the left by VZ (for a=0,1,2, ..., K) and using (24) yields

the equation

K L K
. : _ T, *
INn%,a * kzo Qak“n,k ¥ LE-L qZQ fzaq %n-2,q ~ /E; (Va Ud)sno ’
(41)
where
=V * 42
Qi = Va2 % - (42)

13




In (41), we have 0 < a < K and it is understood that Om,q = 0 whenever
Im} > N. Qzx is readily found from (23) and (28):

jla-k)(dg-43)
Qak = Sak * fq © . (43)

Also, we find from {7) and {(23) that

v - edaltai) g ca <k (44)

T
a Y

*
d
Equation (41), when written out, yields a finite system of

equations of the form
MA =8B , (45)

where A is a vector containing the unknown coefficients ay y ,

v,

A= (o 0N, 100 e s K ONoT, 170 ONaL Koo o2 O, 1 O K

(46)

B is a vector obtained from the right hand side of (41), and M is the
matrix of coefficients obtained from the left side of (41). We give an
example of M and B below in Section III. The numerical results
presented below have been obtained by solving (41) numerically.

For this method to yield accurate results, N must be chosen large
enough that at least 2LJ of the oy y are essentially zero on each end of
the vector A in (46). If this vector has 2LJ zeros on each end, the

solution obtained from (41) will yield the same result as the solution

14



of the infinite system in (38). In practice, a suitable value of N may
be determined by increasing N until the A vector has 2LJ negligible
terms on each end and until the values of the an i in the middle of the
vector A are unaffected by further increases in N. Experience shows how
large N must be in specific cases*. Once the on,k have been found, the
Cn may be found from (40) and W(t') from (39).

The time-varying array weights have two effects on array
performance. They cause the array to modulate the desired signal, and
they cause the array output SINR to vary with time. In the remainder of
this section, we discuss the calculation of these effects.

Given a time-varying weight vector W(t'), the desired signal
component of the array output is

Sy(e') = Ag WT(t) g o (% Tt (47)

where w = mo/kc2 . To study the modulation on g&(t), we define

ejﬂd(t')

24(t") = AT(ENY, (48)

Then a4(t') = AdINT(t')Udl is the envelope modulation and n4(t') =

T (t')Uq is the phase modulation. Furthermore, we define agn(t') to be

*The numerfcal solution of (41) was done using a Gauss elimination
routine with full pivoting [9]. We have not examined the eigenvalue
behavior of M in detail, but we did not experience any convergence
problems or other unusual behavior due to i11-conditioning with this
approach.

15




the envelope normalized to its value in the absence of interference,
i.e.,

O TG (49)

dn T T T
ATRIN

where Wy is the steady-state weight vector that would occur without

interference,

Wy = (g + 0p)-1g (50)
(¢4, ®n and S are given in (17), (20) and (22).) Our results below are
presented in terms of agn(t'), because the effect of the interference

can be seen directly by comparing agn(t') with unity.

The output desired signal power is

Pylt') = %_E[Isd(t')lz] = %—AS le(t') ud|2 . (51)

The output interference power is

oy 1 a2 T 12
hu)-%AiW(t)wu)l s (52)

where Uj(t') is the vector of phasors given in (11) but written

in terms of normalized time t' = ko2t. The output thermal noise power
is
' 2 7 * o 53
=0 ' .
Pa(t') = S2 W (£ W (t) (53)

16




From these quantities, the output interference-to-noise ratio (INR),

IR = Pilt) (54)

and the output signal-to-interference-plus-noise ratio (SINR),

SINR = Pd(t’) , (55)
PitT) + Ppt™)

may be computed as functions of t'.
In the next section, we present an example using this technique and
discuss the effects of a phase modulated interference signal on the

adaptive array.

ITTI., AN EXAMPLE

Consider an array with two elements, so J=2 and K=1. Let the

interference have sinusoidal phase modulation,
Yi(tl) = Bsinw;t' s (56)
where B is the maximum phase deviation (or the modulation index) and m;

is the normalized modulation frequency. Then one finds from (19) and

standard trigonometric identities that

ey smveinlat (o0 2 THY Lo
eJXOI(t ) - eJB Sin[mm (t - --12-) = -2— ] ’ (57)

17




where

, u)mT; (58)
B = 2Bsin s
7
(and T; = kozT). Using the Fourier Series expansion [107,
jzsinp 2 jLp
e’ = ) Jg(z)eJ , (59)
Q=-w
we find
j t < jlw' t!
e 01t LT ¢ : (60)
i =- 201
with
mlmT%
: -j2 + T
foor = 5idg(8') €™ =7 . (61)
From (34), we also have
_ e* - L 62
fFo10 = fogor = (1) ooy s (62)
since
3, (8 = (-1)* 3 (8 . (63)

To truncate the series in (60), we use the fact that

J,(z) 20 for |2 >z +1 - (64)

o

18




Thus, we approximate

. . o
gieJ>t01(t ) =2LZ_L fml ermmt ’ (65)
with
L = {8 +1} = {28 sin %;T; +1} s (66)
-7

where {r} denotes the smaliest integer greater than r.
Writing out (41) with L=2 as an example and with K=1 gives the

following matrix of coefficients M in (45):

e o @ e e o ¢ e o " o o+ o @

e 8 © o & & & o e € ¢ o & ¢

..000 F.20 F_1d2 Z 0 F1 0F
veeo O0F* 0 g* 0 7% d * 0 ¢* 00 0.....
Fy Fl 2 F,0 F,
veee 0 0 0 Fp OF.1dy Z OF; 0Fp 0....
vees 0 F¥ 0 £* 0 Z¥ dig* . 0¥ 0 0 O ....
FZ Fy 1F, 0F,
eees 0 0 0 F.20 F_.1dgZ O0OF; 0 F20 ....
vees 0 F*O0 £* 0 Z*dygf*. 0 F*O0 O O ....
F, 0 F 0fF, 0 F,
veee 0 0 0 F.p0F_1di1Z 0 F1 0 F2 0 ...,

vees O EY 0 £* 0Z*dy ¥ 0OF* 0 0 0 ....
Fy Fl 1F,0F,

19
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The vectors A and S in (45) are

%1,1

which, from (34), also implies

* *

S

-1 L10

and where

d =f

. ' 3 '
n = Tooo * Qoo *dnup =1 + 55+ & +aney

20
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o (8d-65)

o

Oe o o O

(67)

(69)




and
=0y * foo1 = %4 eJ(¢1—¢d) + gd,(8') . (711)
To obtain the results presented below, we have solved this system (with
the appropriate values of L) numerically for the an, ks and then
evaluated C, and W(t') from (40) and (39).

Let us now discuss the results obtained from these calculations.
In part A below, we show typical curves of desired signal modulation,
output INR and SINR as functions of time. In parts B-E, we describe the
effect of each signal parameter on the desired signal modulation. In
part F, we assume the array is used in a DPSK (differential phase shift
keyed) digital communication system [117 and show how the bit error

probability is affected by the interference signal parameters £5, B and

1

f .
m

A. Typical Waveforms

Figure 2 shows typical curves of the normalized envelope modulation

w
' =10° —AR® = = [ | R 2
agq(t') for 8,=30°, 8,=45°, =10 B, £;=30 a8, f, = 0 = 107,
w‘
£l = 7‘1 = 108 , and 8<102, 103, 10® and 10°. These curves illustrate
m

that the envelope modulation on the desired signal can be substantial

for larger values of 8.
It turns out that for this 2-element array, angle modulated
interference does not cause phase modulation on the desired signal.

This result was discovered by calculating ng(t'), for numerous values

21
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Figure 2. aq4n(t') versus time.
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of 9, 8, f; and 5. These calculations show that nd(t‘) does not

change with time regardless of the signal parameters. The reason for
this behavior is as follows. Roth the amplitude and phase of each
weight in the array vary sinusoidally with time. The amplitudes of the
two weights are equal at each instant of time. The phase angle of each
weight contains a term constant with time, which depends on interference
arrival angle, and a term that varies sinusoidally with time. The
sinusoidally varying term is 180° out of phase on the two weights. When
a desired signal is passed through these weights the phase modulation
produced on the desired signal by one weight is 180° out of phase with
that produced by the other weight, and the sum signal at the array
output contains no phase modulation.

Figures 3 and 4 show typical curves of the output INR and SINR as
functions of time, over one period and for the same signal parameters as
in Figure 2. Figure 3 shows that the average INR increases and the
array SINR decreases as B increases. Also, as B increases, the INR and
SINR variations with time are more pronounced. At low 8, the INR and
SINR are constant, because the array feedback tracks the incoming phase
modulation.

In general one finds that the array behavior changes substantially

as the signal parameters ed’ Ed’ 91, Ei, f; and B are varied. In parts

B-E of this section, we examine the effect of each signal parameter on
the desired signal modulation. In part F, we show how bit error
probability is affected by the angle modulated interference when the

array is used in a DPSK communication system.
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To describe the desired signal modulation, we shall define three
quantities. First, we let apin and apayx be the minimum and maximum
values of agn(t') during the modulation period. Then, we define

m = dmax = 4min . (72)

Amax
m is the envelope variation normalized to its peak. It may be thought
of as "fractional modulation", analogous to percentage modulation in AM,
In Parts B-E below, we describe the effect of each signal parameter on

amax and m.

B. The Effect of Angle of Arrival

Desired signal modulation effects are small when 6; is far from 64.
When &; is close to 8y, the envelope variation m is large and the peak
amax is small. However, when 8; is equal to 64, the desired signal is
nulied, so m drops to a small value.

Figures 5 and 6 show typical curves of m and apayx as functions of

- - . ' a3 ' 18 .
Bi for ed-0°, Ed—10 ds, Ei—40 ds, fm-10 and fo—10 . Four different

curves are shown, for B = 2x103, 4x103, 8x103 and 104. It is seen that
m is large and agpax is small when 8; is near 64. We note also that when
8; is extremely close to 84, m drops to zero. This behavior occurs
because as 9; becomes very close to 64, the peak-to-peak variation
(amax-3min) approaches zero more quickly than amax does, so m goes to
zero. However, this behavior of m is no importance, since the desired

signal is nulled anyway.
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C. The Effect of Modulation Index and Frequency

The peak a is large at low f; and drops as f; increases. The

max
higher 8, the farther qpax drops at high f;. The variation m is small
at low f;, peaks at intermediate values of f; and drops as f; increases.

For low and intermediate f;, m is largest for high 8., At high f;, m

drops more rapidly with larger values of 8.

Figures 7 and 8 illustrate these results for the case 64=30°,

ei=45°’ Ed=10 dB, Ei=30 ds, f;=108 and for values of B between 2x103

and 104. It is seen in Figure 7 that a is large for low f; and

max
drops as f; increases. This behavior is due to the array speed of
response, which limits its ability to track the modulation at high f;.

m, seen in Figure 8, peaks at intermediate f;.

D. The Effect of Interference-To-Noise Ratio

For all values of f;, the variation m is largest for high INR.

. . ' . i
3ax 1S high at low fm and drops at high fm.

]
Figures 9 and 10 show the behavior of s and m versus fm for

X

4

=30° =45° = = ‘= 8
8,=30°, ©,=45°, £,=10 dB, 8=10", f =10

and for four values of 51
between 20 and 45 dB., It may be seen in Figure 9 that A ax peaks
slightly at high INR, for values of f; around 400, This behavior is due

to the change in array speed of response with INR.
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Figure 8. m versus f;.
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E. The Effect of Desired Signal-To-Noise Ratio

m is largest and apax is smallest for Tow £4. As &4 is increased,
m decreases and apay increases.

Figures 11 and 12 illustrate this behavior. Figure 11 shows m and

: ! =20° 0 =4R° £ =
Figure 12 shows 3’ both versus fm for Bd-30 . ei 45°, Ei 30 dB,
f;=108, B=104, and for four values of Ed between 10 and 40 dB., It is

seen that m peaks at intermediate f% with the value of f; at the peak

dependent on &4.

F. Bit Error Probability

To evaluate the effect of the time-varying SINR, we have computed
the bit error probability when the desired signal is DPSK biphase
modulated signal. We assume the desired signal bit duration is large
compared with the propagation time across the array but small compared
to the interference modulation period 2"/uw,. Also, we assume the
reference signal is replica of the desired signal. Under these
assumptions the array weights with the DPSK biphase modulated desired
signal are the same as those produced with a CW signal. The effective
bit error probability P, has by obtained by averaging the instantaneous
bit error probability over one period o* the interference modulation.
The instantaneous bit error probability Pe(t') is related to the SINR

by [12],
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p (t') =1 o-SINR(t") (73)

e Z

Figure 13 shows typical curves of E; as a function of f; for

8

84=30°, 0,=45°, £ =10 dB, £,=30 dB, f;=10 and for four values of 8

3

between 2x10~ and 104. At low f;, where the interference bandwidth

is too small to cause any degradation in the array performance, Fé stays

constant at a value that does not depend on 8. This value of Pg is

determined simply by the input INR. As fé increases the interference

bandwidth has more effect. At high f;, Pe approaches 0.5.

Figure 14 shows typical curves of F; versus f; for different values

8

of & and for 8,=30°, 8,=45°, £ =10 d8, f.=10° and 8=10%. These curves

illustrate the dependence of 3; on the interference power. At low f;,
the interference has small bandwidth and Py depends slightly on Ej.

This behavior is the same as with CW interference.

IV. CONCLUSIONS

We have developed a method for finding the periodic steady-state
weights of an adaptive array receiving an interference signal with
periodic angle modulation. We then used this method to study the
behavior of a two-element array subjected to an interference signal with
sinusoidal phase modulation. This interference causes the array weights
to cycle sinusoidally with time, both in magnitude and phase. The
modulated weights cause the desired signal to have envelope (but not

phase) modulation at the array output.
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The envelope modulation is largest when the interference arrives
close to the desired signal in space. The envelope modulation increases
with the bandwidth of the input interference signal. Phase modulated
interference also causes the array output SINR to vary with time. When
the array is used in a digital communication system, such SINR variation

increases the bit error probability.
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